Como funcionam as bombas nucleares

Autor: 
Craig C. Freudenrich, Ph.D.

Selo HowStuffWorks

Certamente você já leu livros de história informando sobre as bombas nucleares usadas na Segunda Guerra Mundial. E também deve ter assistido a filmes de ficção científica onde bombas nucleares foram lançadas ou detonadas (" Limite de Segurança", "Dr. Fantástico", "O Dia Seguinte", "O Testamento", "Sombras no Futuro" e "O Pacificador", apenas para citar alguns). Nos noticiários, enquanto muitos países têm negociado o desarmamento de seus arsenais de armas nucleares, outros têm procurado desenvolver programas de armas nucleares.

Sabe-se que esses artifícios possuem um poder imenso de destruição, mas como eles funcionam? Neste artigo, falaremos sobre a física que faz da bomba nuclear algo tão poderoso, como ela é projetada e o que acontece após a sua explosão.



Imagem cedida pela NARA

Teste de canhão atômico, 1953

As bombas nucleares utiliza-se das forças, fortes e fracas, que mantêm o núcleo do átomo unido, em especial os átomos com núcleos instáveis (veja Como funciona a radiação nuclear para mais detalhes). Há dois modos básicos de a energia nuclear ser liberada a partir de um átomo:

  • fissão nuclear: o núcleo de um átomo pode se fissionar em dois fragmentos menores contendo nêutrons. Este método geralmente envolve isótopos de urânio (urânio-235, urânio-233) ou plutônio-239;
  • fusão nuclear: a partir de dois átomos menores, normalmente hidrogênio ou isótopos de hidrogênio (deutério, trítio), é possível formar um átomo maior (hélio ou isótopos de hélio); de maneira análoga, o sol produz energia.

Em ambos os processos, fissão ou fusão, uma grande quantidade de energia calorífica e radiação será emitida.

Para construir uma bomba atômica é preciso:

  • uma fonte combustível físsil ou fusível;
  • um dispositivo de ativação;
  • um modo que faça que a maior parte do combustível entre em fissão ou fusão antes da explosão da bomba (ou o disparo da bomba irá fracassar).
Perigo no Irã

O Irã informou à agência nuclear da ONU que está construindo uma segunda usina de enriquecimento de urânio, o que deve agravar os temores ocidentais de que o país deseje desenvolver uma bomba nuclear.

Leia mais em VEJA.com

As primeiras bombas nucleares usavam dispositivo de fissão, e as mais recentes bombas de fusão exigem ativação por meio de bomba de fissão. Serão abordados os seguintes tipos de projetos de dispositivos:

  • bombas de fissão (em geral);
  • bomba de fissão de ativação a partir de pistola (Little Boy), que foi detonada sobre Hiroshima, no Japão, em 1945;
  • bomba de fissão de ativação por meio de implosão (Fat Man), que foi detonada sobre Nagasaki, no Japão, em 1945;
  • bombas de fusão (em geral);
  • o projeto da bomba de fusão a hidrogênio de Teller-Ulam, que foi detonada como teste sobre a Ilha de Elugelap, em 1952.

A bomba de fissão utiliza um elemento como o urânio-235 para causar uma explosão nuclear. Se você leu Como funciona a radiação nuclear, então saberá qual o processo básico subjacente à degeneração e à fissão radioativas. O urânio-235 possui uma propriedade extra que o habilita tanto para geração de energia nuclear como para a geração de uma bomba nuclear. O U-235 é um dos poucos materiais que suportam a fissão induzida. Caso um nêutron livre adentre um núcleo de U-235, ele será absorvido imediatamente, tornando o núcleo instável e levando-o a fissurar.

A figura à direita mostra o núcleo do elemento urânio-235 com a proximidade de um nêutron. Tão logo o núcleo capture o nêutron, ele será fissurado em dois átomos menores e expelirá dois ou três novos nêutrons (o número de nêutrons ejetados dependerá de como o átomo U-235 foi fissurado). Os dois novos átomos emitirão uma radiação gama conforme eles se ajustam a seus novos estados (veja Como funciona a radiação nuclear). Há três aspectos sobre o processo de fissão que o tornam interessante:

  • a probabilidade de um átomo U-235 capturar um nêutron conforme este transita é muito grande. Em uma bomba operando devidamente, nêutrons ejetados da fissão poderão ocasionar outras fissões. Essa condição é conhecida como supercriticalidade;
  • o processo de captura e fissão de um nêutron acontece muito rapidamente, na ordem de picossegundos (um trilionésimo de segundo);
  • uma quantidade incrível de energia será liberada, na forma de calor e radiação gama, durante a explosão de um átomo. A energia liberada por uma única fissão acontece devido aos produtos de fissão e nêutrons, conjuntamente, pesarem menos do que o átomo original U-235.

A diferença no peso será convertida em energia a uma taxa regida pela equação e = mc2. No caso de 450 g (1 libra) de urânio altamente enriquecido, como se usa numa bomba nuclear, será igual a 1 milhão de galões de gasolina ou 3.785.412 litros. Ao considerar que 450 g de urânio ocupam menos volume que uma bola de beisebol e que 1 milhão de galões de gasolina enchem um cubo de 15,24 metros de aresta (15,24 metros é a altura de um prédio de cinco andares), pode-se ter uma idéia da quantidade de energia disponível em apenas um pouco de U-235.

Para ativar estas propriedades de U-235, uma amostra de urânio deverá estar enriquecida. O urânio para uso em armas é composto de pelo menos 90% de U-235.

Massa crítica
Em uma bomba de fissão, o combustível deverá ser separado das massas subcríticas, que não suportam fissão, de forma a prevenir a detonação prematura. Massa crítica é o mínimo de material fissurável exigido para garantir sustentação a uma reação de fissão nuclear. Essa separação torna possível a ocorrência de diversos problemas no projeto da bomba de fissão, que deverão ser solucionados:

  • as duas ou mais submassas críticas deverão ser agrupadas para dar origem a uma massa supercrítica, que fornecerá mais nêutrons do que o suficiente para proporcionar uma reação de fissão no momento da detonação;
  • nêutrons livres deverão ser introduzidos à massa supercrítica para dar início à fissão;
  • a maior parte do material fissurável deverá explodir previamente para impedir uma falha.

Para agrupar as massas subcríticas com a massa supercrítica, duas técnicas serão utilizadas:

  • ativação por meio de pistola
  • implosão

gerador de nêutrons. Esse gerador é uma pequena esfera de polônio-berílio, separados por uma lâmina dentro do combustível fissurável. Neste gerador:

  • A lâmina será rompida quando as massas subcríticas agruparem-se e o polônio emitir partículas alfa.
  • Essas partículas alfa colidirão com o berílio-9 para produzir berílio-8 e liberar nêutrons.
  • Os nêutrons darão início à fissão.

Finalmente, a reação de fissão será confinada dentro de um material denso, conhecido como refletor de reator nuclear, que é normalmente composto por urânio-238. O refletor de reator nuclear se aquece e se expande por meio da zona central da fissão. Essa expansão exerce uma pressão de volta ao refletor e desacelera a expansão da zona central. O refletor de reator nuclear também refletirá nêutrons de volta à zona central de fissão, aumentando a eficiência da reação.